- [13] C. Leibovici, Anales de Física 66, 105 (1970).
- [14] W. Hug & G. Wagnière, Helv. 54, 633 (1971).
- [15] J.N. Murrell, "The Theory of the Electronic Spectra of Organic Molecules", S. 168, Methuen & Co Ltd., London 1963.
- [16] E. Charney, private Mitteilung.

1466

- [17] D.W. Turner, A.D. Baker, C. Baker & C. R. Brundle, "Molecular Photoelectron Spectroscopy", J. Wiley and Sons, Inc., New York 1970.
- [18] A.D. Walsh, Trans. Farad. Soc. 41, 498 (1945); 42, 56 (1946); H. I. Reed & J. C. Brand, ibid. 54, 478 (1958); D. W. Turner, in «Advances in Physical Organic Chemistry», edited by V.Gold, Vol. 4 «Ionization Potentials», S. 31–69, Academic Press, London und New York 1966.
- [19] C. Tamm & R. Albrecht, Helv. 43, 768 (1960).
- [20] H.Gerlach, Helv. 51, 1587 (1968).
- [21] W. Hug & G. Wagnière, Chimia 24, 37 (1970); G. Wagnière & W. Hug, Tetrahedron Letters 1970, 4765.
- [22] E. Heilbronner & R. Gleiter, private Mitteilung.
- [23] C. Leibovici & J. Deschamps, Theoret. chim. Acta 4, 321 (1966).
- [24] W.C. Howell, M. Ktenas & J.M. MacDonald, Tetrahedron Letters 1964, 1719; B. Eistert, H. Fink, J. Riedinger, H.-G. Hahn & H. Dürr, Chem. Ber. 102, 3111 (1969).
- [25] W. Hug & G. Wagnière, Tetrahedron 25, 631 (1969).
- [26] P. Dowd, T. Dyke & W. Klemperer, J. Amer. chem. Soc. 92, 6327 (1970).
- [27] G. Snatzke & G. Eckehardt, Tetrahedron 24, 4543 (1968).
- [28] H. Labhart, Adv. chem. Physics 13, 179 (1967).
- [29] W. Kuhn, H. Dührkop & H. Martin, Z. physik Chem. B 45, 121 (1939).
- [30] W. Liptay, Z. Naturforsch. 20a, 272 (1965).
- [31] J.A. Pople, D. P. Santry, G.A. Segal, J. chem. Physics 43, s 129 (1965).
- [32] J. M. Sichel, M. A. Whitehead, Theoret. chim. Acta 7, 32 (1967).
- [33] R. J. Wratten, Chem. Physics Letters 1, 667 (1967).

152. Chimie et pharmacologie de l'apiose. IV¹)

(Hydroxyméthyl-3- β -D-érythrofurannosyl)-9-adénine: Synthèse, conformation en solution et essais biologiques préliminaires

par J. M. J. Tronchet et Mme J. Tronchet

Institut de Chimie Pharmaceutique de l'Université, 10, boulevard d'Yvoy, 1205 Genève

(17 V 71)

Summary. The title compound, an apionucleoside, has been synthesized and is shown by NMR, to exist mainly in the conformation $E_{3'}$. The reasons why this branched-chain nucleoside is not a substrate for adenosine deaminase are discussed. The compound inhibits the growth of *Escherichia coli* and *Staphylococcus aureus* in synthetic liquid media.

Depuis la synthèse par *Walton* et coll. [2] en 1966 du premier nucléoside à sucre ramifié, un certain nombre d'exemples de ce type d'analogues de nucléosides naturels ont été préparés [3] [4] [5] et l'activité antivirale ou anticancéreuse de quelques-uns d'entre eux a été démontrée [4]. L'intérêt biologique de ces composés provient de leur analogie structurale avec les nucléosides naturels et l'on peut, *a priori*, penser que plus étroite sera cette analogie, plus intéressants seront les composés préparés. Dans une

¹⁾ La référence [1] constitue la troisième communication de cette série.

communication préliminaire [5] nous avons succinctement décrit la synthèse de deux isomères de position de l'adénosine (A), les apionucléosides **B** (dans la série L) et **C**. Nous donnons ci-dessous quelques détails sur la synthèse et les propriétés de **B** et les premiers résultats de tests biologiques réalisés sur ce corps.

L'O-isopropylidène-1, $2-\alpha$ -L-glycéro-tétrosulo-3-furannose (1) [6] [7] [1] traité par des réactifs de *Grignard* conduit avec une haute stéréosélectivité à celui des deux sucres ramifiés épimères en C3 qui provient d'une attaque du nucléophile sur la face *exo*, la moins encombrée, du cycle furannique. Ainsi, l'utilisation de bromure d'éthynyl-magnésium selon [8] conduit à **2**, alors que l'emploi de bromure de vinylmagnésium [9] – réactif utilisé pour la première fois en chimie des sucres par *Overend* et coll. [10] – permet de préparer **3**. Indépendamment de leur intérêt pour la synthèse de sucres ramifiés à chaîne latérale hydroxyméthyle, formyle ou carboxyle, les sucres insaturés ramifiés **2** et **3**, obtenus avec de bons rendements, constituent d'excellents substrats pour des réactions de cycloaddition dipolaire-1, 3 [11].

Le sucre ramifié **4** est préparé par ozonolyse de **3** suivie d'une réduction de l'ozonide formé, soit par du borohydrure de sodium, soit par de l'hydrogène puis de l'aluminohydrure de lithium. L'analogue deutérié **5** (facilement obtenu à l'aide d'aluminodeutériure) permet, par la comparaison de son spectre de RMN. avec celui de **4**, d'attribuer sans ambiguité les signaux correspondant aux deux groupements méthylènes (cf [7]) et facilite l'interprétation des spectres de masse dans cette série.

Un sous-produit mineur mais constant de la préparation de 4 à partir de 3 est l'O-isopropylidène-1, 2- α -L-érythrofurannose (6), dont la formation n'est *pas* due à la contamination des échantillons de 3 soumis à l'ozonolyse par le produit d'une éven-

tuelle transposition allylique. Depuis notre communication préliminaire [7], l'énantiomère D de **4** (**4**') a été préparé avec de moindres rendements par d'autres méthodes [12] [13].

La di-O-benzylation de **4** s'effectue aisément par la technique de *Brimacombe* [14] et le composé 7 obtenu, soumis à une hydrolyse acide puis à une acétylation, conduit au mélange d'anomères α et β 8. Le spectre de RMN. du mélange indique que l'isomère le plus abondant ($\sim 70\%$) présente une constante de couplage $J_{1,2}$ plus faible (1,8 Hz) que celle du second isomère (4,7 Hz). L'isomère prépondérant ($J_{1,2} = 1,8$ Hz), ne peut être que l'anomère β , car l'examen du modèle moléculaire de l'anomère α indique pour l'angle dièdre H-C1-C2-H ($\Phi_{1,2}$) une valeur maximale de 45° devant donner lieu à une constante de couplage $J_{1,2}$ bien supérieure à 2 Hz. La faible valeur de $J_{1,2}$ β indique qu'à l'équilibre la population des conformations dans lesquelles le groupement acétoxy-C1 est axial est importante, ce qui marque l'influence considérable – déjà notée [15] – de l'effet anomérique en série furannique. Le traitement de 8 par de la chloromercuri-N-benzoyladénine en présence de TiCl₄ selon la technique de Prokop & *Murray* [16] conduit à 9. La configuration β de 9 et de ses dérivés est établie d'une part par le fait que dans ce type de réactions la base purique ou pyrimidique se fixe en trans par rapport au groupement acyloxy porté par C2 à cause de la participation du carbonyle de ce groupement à la réaction, d'autre part par la comparaison de leurs

 $B = CH_2Ph$ Bz = COPh

pouvoirs rotatoires et de leurs spectres de RMN. (vide infra) avec ceux de la méthyl-3'-adénosine [4], dont la configuration β a été prouvée par la synthèse d'un cyclonucléoside. La désacylation de 9 conduit à 10, qui par débenzylation fournit le β -Lapionucléoside 11. Cette synthèse de 11 par l'intermédiaire de dérivés O-benzylés, peu susceptibles de donner lieu à des phénomènes de migration et pour lesquels une participation d'un atome d'oxygène de la chaîne latérale à la stabilisation du carbocation intermédiaire de la réaction $\mathbf{8} \rightarrow \mathbf{9}$ était improbable, donne toute garantie quant à la configuration β du nucléoside ainsi préparé. Néanmoins, la réaction de débenzylation étant capricieuse, nous avons expérimenté, pour la préparation de **11** à partir de **4**, une autre voie synthétique faisant intervenir le bloquage par acétylation des hydroxyles portés par les carbones C3 et C3₁. Ces synthèses ont été effectuées dans les séries D et L. Par exemple, à partir de 1', énantiomère de **1**, on prépare **4**' selon les techniques décrites plus haut. Par di-O-acétylation de **4**' on obtient **12**' [17], dont l'hydrolyse acide suivie d'une acétylation conduit à **13**', mélange des deux anomères dans lequel l'anomère β ($J_{1,2} \leq 1$ Hz) est prépondérant ($\simeq 75\%$). Par désacétylation de **14**', préparé selon une technique analogue à celle utilisée pour la synthèse de **9**, on obtient **11**', identique, au signe du pouvoir rotatoire près, à **11** obtenu par l'intermédiaire du dérivé O-benzylé.

Ainsi, du fait peut-être de la prépondérance de l'anomère β de **13**' dans lequel les groupements acyloxy portés par C1 et C2 sont en disposition *trans*, la présence d'un groupement acétoxy en C3₁ ne modifie pas la stéréochimie de la réaction.

Le spectre de masse (SM.) de **11**^{\prime} (fig. 1) présente la plupart des signaux habituellement rencontrés dans les SM. de nucléosides [18] [19], en particulier: M^+ (267), (Ad + H)⁺ (135), (Ad + 2 H)⁺ (136), (Ad - CN)⁺ (108). Il diffère de façon significative de celui de la désoxy-2'-adénosine [18] mais présente de grandes similitudes avec celui de l'adénosine [18], son isomère de position. Cette similitude est explicable par le fait que, vu la haute densité électronique de la base purique, les fragments chargés les plus

abondants sont ceux qui comportent la base et éventuellement les carbones C1' et C2', au niveau desquels il n'y a pas de différence entre adénosine et 11', tandis que les fragments provenant du groupement glycosyle ont une faible abondance. Ainsi on rencontre dans le spectre de 11' comme dans celui de l'adénosine les fragments $(B + 30)^+$ (164) et $(M^+ - 89)$ (178) pour lesquels les structures suivantes ont été proposées [22]: Ad-+C1HOH (164) et Ad-C1H₂-+C2HOH (178). Sur la base de l'absence de pic $M^+ - 89$ dans le SM. de la désoxy-5'-adénosine, *Biemann & McCloskey* [18] ont admis que la formation de cet ion faisait intervenir le groupement hydroxyméthyle porté par C4'. Le fait que 11' donne ce même pic indique que l'apparition de ce fragment n'est pas diagnostique de l'existence d'un hydroxyméthyle en C4' et que le

mécanisme de sa formation doit être revu. Une différence quantitative, mais semble-t-il significative, entre 11' et l'adénosine et ses dérivés désoxy-2' et -3' est la moindre abondance dans 11' du fragment $(M^+ - CH_2O)$.

Pour tenter de préciser les relations entre la structure du nucléoside **11**' et ses propriétés biologiques, nous avons étudié par RMN. sa conformation en solution. Etant donné l'absence de proton en C3', la seule constante de couplage utilisable est $J_{1',2'}$ qui possède une valeur élevée (7,2 Hz, C_5D_5N , 7,5 Hz (CD_3)₂SO, D_2O , 7,3 Hz (CD_3)₂SO)), ec qui implique une relation axiale-axiale ou axiale-quasi des protons H–C1' et H–C2'. Les conformations comportant de telles dispositions relatives de HC1' et HC2' sont les suivantes: E_3 , (3' exo²)), E^0 (O endo), E_1 , (1' exo), $E^{2'}$ (2' endo), $T_{3''}^2$, $T_{1'}^0$, $T_{1'}^2$.

Le choix d'une ou plusieurs de ces conformations comme structure de la molécule est rendu difficile par le fait que la règle de Karplus [21] – ou d'une des ses variantes utilisée en chimie des sucres [22] – ne peut pas être appliquée avec sécurité à la constante de couplage $J_{1',2'}$ dans la mesure où C1' diffère des autres carbones de la molécule par le fait qu'il porte deux atomes relativement électronégatifs.

Néanmoins, alors qu'on peut admettre [15] que la présence de deux oxygènes sur le carbone C1 réduit d'environ 1,5 Hz la valeur de $J_{1,2}$ anti, la comparaison des paramètres des spectres de l'uridine (N-nucléoside) et de la β -pseudo-uridine (C-nucléoside) décrits par Blackburn et coll. [23] indique que cet effet est sans doute très faible, en tous cas inférieur à 0,5 Hz, pour les nucléosides. En regard de chacune des conformations qui pourraient être envisagées pour 11', nous avons porté dans le tableau l'angle $\Phi_{1',2'}$ mesuré sur un modèle de Dreiding (ces valeurs sont en général légèrement supérieures à celles de Jardetsky [20] et légèrement inférieures à celles de Hruska et coll. [24]) et la valeur estimée de $J_{1',2'}$ calculée d'après l'équation de Karplus modifiée par Abraham et coll. [22].

Conformation	Relation stérique HC1'—HC2'	$\Phi_{1',2'}$	$J_{1',2'}^{\text{est}}$ (Hz)	Facteurs défavorables
 E ₃ ,	a, q	≃ 145°	6,6	
E^0	a,q	$\simeq 145^{\circ}$	6,6	O-C2′, C-C3′ éclipsés
E ₁ ,	<i>a</i> , <i>a</i>	$\simeq 160^{\circ}$	8,9	
$E^{2'}$	a, a	$\simeq 160^{\circ}$	8,9	
T_{3}^{2} ;	a, a	$\simeq 155^{\circ}$	8,2	
T ⁰ ₁ ,	<i>a</i> , <i>a</i>	$\simeq 150^{\circ}$	7,5	O—C2', O—C3' presque éclipsés, CH ₂ OH quasi
T_{1}^{2}	a, a	$\simeq 160^{\circ}$	8,9	_

Quelques caractéristiques de conformations possibles pour l'apioside 11'

L'examen du tableau indique que ce sont les conformations E_3 , (Schéma **D**) et $T_{3'}^{2'}$ qui rendraient le mieux compte des valeurs mesurées de $J_{1',2'}$. Dans ces deux conformations le groupement hydroxyméthyle occupe une position équatoriale, ce qui est en accord avec son exigence stérique élevée. Il est intéressant de comparer ces données avec celles de *Walton* et coll. [4] qui ont synthétisé la méthyl-3'-adénosine $(J_{1',2'})$

²) Selon la nomenclature de Jardetzky [20].

8,2 Hz) à laquelle ils attribuent la conformation $T_{3'}^{2'}$ (schéma E) sur la base de l'excellent accord entre les valeurs resp. mesurées et estimées de $J_{1',2'}$. L'apionucléoside 11' et la méthyl-3'-adénosine diffèrent surtout par la présence d'un groupement hydroxyméthyle en C4' dans ce dernier composé. Si l'on examine les trois conformations a priori les plus probables pour ces deux composés, à savoir $E^{2'} T_{3'}^{2'} E_{3'}$ dans lesquelles la chaîne latérale fixée en C3' est équatoriale, on remarque que la distance entre la base purique et le substituant en C4' cis par rapport à la base diminue lorsqu'on passe de $E^{2'}$ à $T^{2'}_{3'}$ puis à $E_{3'}$, ce qui rend la conformation $E_{3'}$ peu favorable pour la méthyl-3'-adénosine dans laquelle ce substituant est volumineux (hydroxyméthyle), et plus favorable pour 11' dans lequel ce substituant est un hydrogène. Ainsi, tout un «spectre» d'équilibres conformationnels est possible entre $E_{3'}$ et $E^{2'}$, l'apionucléoside 11' se trouvant du côté de $E_{3'}$ et la méthyl-3'-adénosine, plus proche de $E^{2\prime}$. La question de savoir si ces composés existent comme des mélanges de conformères enveloppes ou si des formes tordues sont présentes en solution est impossible à résoudre, l'argument selon lequel les nucléosides semblent exister exclusivement sous forme enveloppe à l'état solide n'étant pas péremptoire.

La comparaison des valeurs de $J_{1',2'}$, de la méthyl-3'-adénosine (8,2 Hz) [4], de l'apioside 11' (7,2 Hz) et de son épimère en 3 (3 Hz) [5], de même que l'étude conformationnelle de la méthyl-2'-adénosine ($J_{3',4'} = 8,8$ Hz) [4] montrent que la chaîne latérale des nucléosides à chaîne ramifiée furannique *impose* à la molécule un équilibre conformationnel où prédominent les conformères dans lesquels cette chaîne latérale a une disposition équatoriale. Ces modifications drastiques apportées à l'équilibre conformationnel des nucléosides par des manipulations portant sur la position ou l'orientation de chaînons à un carbone contrastent avec le peu d'effets qu'ont ces mêmes opérations sur l'équilibre conformationnel des sucres furanniques dont le carbone 1 est lié à deux oxygènes (dérivés polyacylés du β -D-ribofurannose: $J_{1,2} < 0.5$ Hz [15]; β -8, $J_{1,2} = 1,8$ Hz, β -13, $J_{1,2} < 1$ Hz; épimère en 3 de β -8, $J_{1,2} < 1$ Hz [25]). Dans ces derniers cas c'est le substituant oxygéné du carbone anomérique qui impose à la molécule sa conformation. Ces phénomènes sont de nouveaux exemples de la grande importance de l'effet anomérique en série furannique, mise en évidence récemment par *Stevens & Fletcher* [15].

Du point de vue de l'intérêt biologique potentiel des analogues de nucléosides, on admet [26] que l'activité de ces corps est conditionnée principalement par la rapidité avec laquelle ils sont détruits par l'adénosine-désaminase et par leur plus ou moins grande aptitude à être phosphorylés, la phosphorylation semblant la voie majeure de leur insertion dans les métabolismes.

Nous avons constaté que l'apionucléoside 11' n'était pas désaminé par l'adénosinedésaminase, ce qui non seulement est intéressant du point de vue de l'éventuelle utilisation thérapeutique de ce nucléoside mais permet également de préciser les conditions structurales requises pour la désamination enzymatique des nucléosides et de leurs analogues.

Bloch, Robins & McCarthy [26], après l'étude de la désamination enzymatique d'un nombre élevé d'analogues de nucléosides, ont proposé les règles suivantes (*inter alia*) régissant les relations structure-désaminabilité:

– le groupement hydroxyle en C5' est indispensable alors que les hydroxyles en C2' et en C3' ne le sont pas,

– néanmoins en cas d'absence d'hydroxyle en C5' un hydroxyle en C3' en disposition *cis* par rapport à la base rend le substrat désaminable (désoxy-5'- β -D-xylofurannosyl-adénine, α -L-thréofurannosyl-adénine), sauf toutefois dans le cas de l' α -L-érythrofurannosyl-adénine, cette exception étant attribuée par les auteurs à l'établissement dans ce composé d'une liaison hydrogène entre les hydroxyles portés par C2' et C3'.

Nos propres résultats et la publication par *Walton* et coll. [4] des modalités de désamination des méthyl-2'-, -3'- et -5'-adénosines nous amènent à compléter comme suit les observations de *Bloch* et coll. [26]:

1° Dans la mesure où toutes les β -D-pento-*aldo*-furannosyl-adénines et la méthyl-2'-adénosine sont des substrats de l'enzyme, on peut penser que la conformation du cycle furannique n'a pas une influence déterminante.

2° Les trois conformations privilégiées de l'adénosine au niveau de la simple liaison C4'-C5' sont I, II et III. Dans l'hypothèse, implicite dans le traitement de *Bloch* et coll., où un hydroxyle fixé en C3' pourrait se fixer sur le même sub-site enzymatique que l'hydroxyle-C5', la conformation active de l'adénosine serait II ou III.

3° La résistance de la méthyl-3'-adénosine à la désamination pourrait être expliquée par une modification de l'équilibre conformationnel au niveau de la liaison C4'--C5', la présence du groupement méthyle en C3' déstabilisant le conformère II qui devrait donc être le conformère actif.

4° Néanmoins l'examen des modèles moléculaires indique que dans sa conformation E_3 , l'apionucléoside **11**' est susceptible de disposer l'hydroxyle de son groupement hydroxyméthyle-C3' dans une position plus voisine de celle qu'occupe l'hydroxyle-C5' de l'adénosine dans la conformation II, que ne peut le faire la désoxy-5'- β -D-xylofurannosyladénine. Il en est de même pour la conformation III de l'adénosine. Ceci indique que la présence d'un hydroxyle pouvant adopter une disposition stérique voisine de celle qui semble conférer à l'adénosine la capacité d'être désaminée n'est pas suffisante pour faire d'un analogue de nucléoside naturel un substrat pour la désaminase, mais qu'il est probable que la présence d'un chaînon monocarboné sur le C3' de ces composés empêche leur fixation sur le site actif de l'enzyme. Cette hypothèse est

1473

plus probable que celle selon laquelle ce serait l'établissement d'une liaison hydrogène entre HO-C3' et HO-C3'₁ qui rendrait impossible la désamination enzymatique – en milieu aqueux-de 11'.

Les exigences structurales proposées [27] pour la phosphorylation sont pour le sucre la présence d'un hydroxyméthyle en C4' et d'un hydroxyle en position C2' ou C3'. Dans la mesure où les hydroxyles tertiaires ne semblent pas être phosphorylés et dans l'hypothèse où le groupement hydroxyméthyle en C3' pourrait l'être, au même titre que le groupement hydroxyméthyle en C4' de l'adénosine, 11' serait un analogue biologiquement très proche de la cordycépine (désoxy-3'-adénosine) (**F**).

A des concentrations de 50 à 100 γ/ml , 11' possède un effet bactériostatique sur *E.coli* cultivé en milieu synthétique liquide de *Gray & Tatum* [28] (cf fig. 2), et à des concentrations de 75 à 100 γ/ml il inhibe la croissance de *Staphylococcus aureus* cultivé en milieu liquide du type de celui de *Hanka & Burch* [29].

Partie expérimentale

Généralités. Les évaporations ont été effectuées sous pression réduite à température inférieure à 40°C. Les F. ont été déterminés sur microscope à platine chauffante Leitz.

Les chromatographies sur couche mince (CCM.) analytiques ont été réalisées sur plaques de 7,5 × 2,5 cm recouvertes d'une couche de 0,25 mm d'épaisseur de «Silicagel HF *Merck*», distance de migration 5 cm, proportions indiquées pour les mélanges de développement en v/v, révélation: lampe UV. puis réactif phosphomolybdique sulfurique ou réactif spécifique de l'insaturation (KMnO₄ 0,1 \aleph).

Les CCM. préparatives ont été effectuées sur plaques de 40×20 cm recouvertes d'une couche de 2 mm d'épaisseur de « Silicagel HF *Merck* ».

Les chromatographies gaz-liquide (CGL.) analytiques ont été réalisées sur *Perkin-Elmer* F11 muni d'une colonne de 1,8 m (diamètre 3 mm) de néopentylglycol-sébacate 0,5% sur chromosorb G 80–100 mcsh. Les volumes de rétention relatifs $V_{\rm RR}$ ont été établis par comparaison avec le volume de rétention du di-O-isopropylidène-1,2:5,6- α -D-glucofurannose, utilisé comme étalon interne.

Les pouvoirs rotatoires ont été mesurés sur *Perkin-Elmer* 141; les spectres de masse, sur *Atlas* MAT CH-4; les spectres IR., sur *Perkin-Elmer* 157; les spectres UV., sur *Unicam* SP 800.

Les spectres de RMN. ont été enregistrés sur *Perkin-Elmer* R12 muni du dispositif de découplage. Les constantes de couplage sont déterminées sur des expansions du spectre sur 100 Hz. Les déplacements chimiques sont mesurés au centre des massifs. Abréviations utilisées: p. = proton, s = singulet, d = doublet, t = triplet... Les attributions sont dans la règle confirmées par double résonance.

Ethynyl-3-O-isopropylidène-1, 2-α-L-érythrofurannose (**2**): Soumis à l'éthynylation selon [8], 3 g de **1** conduisent à 3,4 g (86%) d'un sirop qui cristallise à 0° et qui par distillation (85–110°/0,2 Torr) fournit 1,97 g (56%) de cristaux qui, en CCM. (CHCl₃/Et₂O 3:1; révélation par KMnO₄), présentent à côté d'unc tache majeure (Rf = 0,5) (**2**) une impureté (Rf = 0,2). L'échantillon analytique est obtenu par CCM. préparative: $V_{\rm RR}^{170^\circ} = 0,18$. F. 64,2–65,4°. [α] $_{\rm L}^{18} = -56,2^\circ$ (c = 1,6, CHCl₃). IR. et

RMN.: cf. [7]. SM.: 59 (100), 68 (50), 43 (50), 126 (23), 109 (23), 96 (14), 39 (13), 18 (13), 169 (7), $(M^+ - 15)$, 87 (7), m/e (intensités relatives).

 $C_{9}H_{12}O_{4}$ (184,19) Calc. C 58,68 H 6,56% Tr. C 58,88 H 6,54%

O-Isopropylidène-1, 2-vinyl-3-α-L-érythrofurannose (**3**): On ajoute en 0,5 h à -20° une solution de 4,7 g (3 mmoles) de **1** dans 20 ml de tétrahydrofuranne (THF) à une dispersion de 7,5 mmoles de CH₂=CH-MgBr [9] dans 25 ml de THF. Le mélange est abandonné 14 h à 20° puis traité par 50 ml d'une solution aqueuse glacée de NH₄Cl à 10%. La phase tétrahydrofurannique est décantée, et la phase aqueuse, extraite par 3 fois 50 ml d'éther. Les extraits tétrahydrofuranniques et éthérés réunis, séchés (MgSO₄) et concentrés sous vide, abandonnent 4,89 g (88%) d'un sirop qui cristallise à 0°. Après distillation (55-60°/0,08 Torr) on obtient 4,27 g (77%) de cristaux qui par CCM. (éther) sont résolus en 2 taches: l'une majeure (Rf = 0,8) correspondant à **3**, la seconde (Rf = 0,55) pouvant être résolue par CGL. en deux fractions constituant ensemble environ 18% du distillat. Une CGL. préparative (*Perkin-Elmer* F21, colonne de 2,7 m (diamètre 8 mm) de néopentylglycol-sébacate sur chromosorb W80-100 mesh, 120°) permet d'obtenir **3** pur ainsi que les deux sous-produits qui se révèlent ne pas être des dérivés de sucres (IR., RMN.). **3** puet également être purifié par CCM. préparative, ce qui permet d'évaluer le rendement de la réaction en produit pur à 63%. $V_{RR}^{706} = 0,11$. F. 40,5-42°. [α]_D = $-34,2^{\circ}$ (c = 0,7, CHCl₃). IR. et RMN.: cf. [7]. SM.: 70 (100), 43 (59), 18 (54), 55 (28), 59 (21), 97 (15), 128 (13), 98 (13), 58 (13), 69 (12).

 $C_9H_{14}O_4 \ (186,21) \qquad Calc. \ C \ 58,05 \quad H \ 7,58 \ \% \qquad Tr. \ C \ 57,99 \quad H \ 7,63 \ \%$

O-Isopropylidène-1,2-vinyl-3- α -*D-érythrofurannose* (**3**'): Préparé à partir de **1**' par la technique décrite pour **3**. F. 41–42°. [α]²⁴_D = + 34,5° (c = 0,9, CHCl₃).

Hydroxyméthyl-3-O-isopropylidène-1, 2-α-L-érythrofurannose (**4**) et son dérivé deutérié- $(D-3_1)$ (**5**). – 1. Protocole A. (adapté de [30]): On fait barboter pendant 3 h à -30° de l'oxygène ozoné dans une solution de 1,62 g (8,7 mmoles) de **3** dans 30 ml de CHCl₃. La solution d'ozonide obtenue est transférée dans un réacteur muni d'un agitateur efficace. On ajoute alors goutte à goutte, à 25°, sous agitation vigourcuse une solution de 1,7 g (43,5 mmoles) de NaBH₄ dans 50 ml d'éthanol à 50%, chauffe à reflux pendant 2,5 h puis abandonne 14 h à 25°. L'excès de NaBH₄ est alors détruit avec de l'acide acétique à 10%, la phase chloroformique, décantée et la phase aqueuse, extraite par 2 fois 50 ml de CHCl₃. Les extraits chloroformiques séchés (MgSO₄) abandonnent par évaporation 763 mg de cristaux. Par évaporation de la phase aqueuse et extraction du résidu pâteux par 5 fois 30 ml de CH₂Cl₂ on obtient encore 500 mg de cristaux (au total 76%). Une recristallisation (AcOEt-Hexane) des cristaux réunis fournit 1,10 g (66%) de **4** pur (contrôle par CCM., éther, Rf = 0,2). F. 116°-118°. [α]²⁰₂ = -43,8° (c = 1,5, EtOH). IR. et RMN.: cf. [7]. SM.: 59 (100), 43 (91), 28 (81), 74 (73), 85 (64), 56 (37), 175 (34) (M^+ -15), 31 (34), 71 (27), 29 (26).

C₈H₁₄O₅ (190,19) Calc. C 50,52 H 7,42% Tr. C 50,74 H 7,55%

Les liqueurs-mères de recristallisation de **4** contiennent de faibles quantités de **4** et un second produit (CCM., éther, Rf = 0,4) qui, isolé par CCM. préparative, s'avère identique (F. du mélange, CCM., CGL., RMN., IR.) à un échantillon authentique d'*O*-isopropylidène-1, 2- α -L-érythrofurannose (**6**) [17].

2. Protocole B: On fait barboter pendant 3 h à -15° un courant d'oxygène ozoné dans une solution de 1,62 g de **3** dans 30 ml d'AcOEt. La solution d'ozonide est ensuite hydrogénée (hydro-génateur de *Parr*) pendant 1 h à 25° sous 3 atm en présence de 100 mg de PtO₂. Le résidu obtenu par évaporation après filtration possède un carbonyle (IR.). Ce résidu est dissous dans 20 ml de THF. 12 ml de cette solution sont ajoutés à une solution de 1 g de LiAlH₄ dans 10 ml de THF, tandis que les 8 ml restants sont traités par du LiAlD₄ (1 g dans 10 ml de THF). Les deux réactions sont conduites de la même façon: 1 h de reflux puis 14 h à 25°, destruction de l'excès d'hydrure à 0° par une solution aqueuse de NH₄Clà 10%, filtration, séparation de la phase tétrahydrofurannique puis extraction de la phase organiques on obtient par recristallisation (AcOEt-hexane) des résidus respectivement 435 mg de **4** et 325 mg de **5** (RMN. cf. [7]).

*Hydroxyméthyl-3-O-isopropylidène-1, 2-α-*D-*érythrofurannose* (4'): Préparé selon le protocole A: $V_{RR}^{170^{\circ}} = 0,40$. F. 116–117°. $[\alpha]_D^{29} = +49,9^{\circ}$ (c = 0,8, EtOH). [Litt. [12]: F. 116–118°; $[\alpha]_D^{29} = +44^{\circ}$ (c = 1,0, EtOH). Litt. [13]: F. 118–120°; $[\alpha]_D = +54,5^{\circ}$ (c = 1,3, EtOH).]

O-Benzyl-3-benzyloxyméthyl-3-O-isopropylidène-1,2-\alpha-L-érythrofurannose (7): Une solution de 2,41 g (12,6 mmoles) de **4** dans 15 ml de diméthylformamide est ajoutée goutte à goutte en 30 min à

3 g de NaH. On ajoute ensuite goutte à goutte un excès (20 g) de chlorure de benzyle. Après 4 h d'agitation à 25° l'excès d'hydrure est détruit par l'addition de 40 ml de McOH. Après concentration sous vide, le résidu est extrait par 2 fois 75 ml de CHCl₃. Les extraits chloroformiques lavés (H₂O) et séchés (MgSO₄) abandonnent par évaporation un sirop qui, après distillation (160°/0,12 Torr), cristallise. Par recristallisation (éther-éther de pétrole) on obtient 2,75 g (58%) de 7: $V_{\rm RR}^{170\circ} = 0,44$. F. 60–61°. [α]₁₉¹⁹ = -58° (c = 1,5, CHCl₃). CCM.: Rf = 0,6 (CCl₄/éther 1:1). IR.: 3,30 μ ($\nu_{\rm C-R}$ aromatique) 6,25, 6,70, 13,60 et 14,42 μ (Ph). RMN. (CDCl₃): $\tau = 2,51$, s, 10 p. (Ph); $\tau = 4,14$, d, 1 p., $J_{1,2} = 3,8$ Hz (H—C1); $\tau = 5,19$ et 5,35, 2s, 2 × 2 p. (CH₂ benzyle); $\tau = 5,37$, d, 1 p., (H—C2); Système *AB* centré sur $\tau = 6,03$, 2 p., $J_{4a,4b} = 8,7$ Hz (H—C4); $\tau = 6,33$, s, 2 p., (H₂C3₄); $\tau = 8,37$ et 8,61, 2 s, 2 × 3 p. (isopropylidène). SM.: 43 (100), 44 (58), 28 (34), 79 (26), 91 (23), 58 (23), 41 (16), 39 (14), 107 (13).

C₂₂H₂₆O₅ (370,45) Calc. C 71,34 H 7,07% Tr. C 71,44 H 7,23%

Di-O-acétyl-1, 2-O-benzyl-3-benzyloxyméthyl-3-β-(+α)-L-érythrofurannose (8): 500 mg de 7 en solution dans un mélange de CH₃COOH (20 ml) ct d'H₂O (4 ml) sont portés à 70°. Après 24 h 7 a totalement disparu du milieu (CCM., CCl₄/éther 1:1). Les solvants sont alors évaporés. La solution du résidu dans un mélange de pyridine (10 ml) et d'Anhydride acétique (5 ml) est abandonnée 14 h à 25° puis versée sur de la glace. On extrait par 3 fois 25 ml de CHCl₃. Après lavage (HCl 0,1 N), les extraits chloroformiques séchés (MgSO₄) abandonnent par concentration un sirop qui est soumis à une CCM. préparative (hexane/AcOEt 2:1). La bande principale (Rf = 0,45) éluée fournit 326 mg (59%) de 8: sirop. IR.: 3,30 μ (v_{C−H} aromatique), 5,75 μ (v_{C=0}), 6,24, 6,70, 13,55 et 14,30 μ (Ph), 8,24 μ (v_{C−O−C}). RMN. (CDCl₃): τ = 2,74, s, 10 p. (Ph); τ = 3,71, d, ≃0,3 p., $J_{1,2}$ = 4,7 Hz (H−C1 α); τ = 3,81, d, ≃0,7 p., $J_{1,2}$ = 1,8 Hz (H−C1 β); τ = 4,72, d, ≃0,7 p. (H−C2 β); τ = 4,82, d, ~ 0,3 p. (H−C2 α); τ : 5,35–6,35, m, 8 p. (quatre CH₂); τ = 7,93, 7,99 et 8,03, 3s, total 6 p. (acétyles). SM.: 44 (100), 28 (59), 43 (37), 91 (15), 57 (13), 77 (13), 45 (13), 32 (12), 29 (11), 105 (11).

C₂₃H₂₆O₇ (414,46) Calc. C 66,66 H 6,32% Tr. C 66,67 H 6,20%

 $(O-Acétyl-2-O-benzyl-3-benzyloxyméthyl-3-\beta-L-érythrofurannosyl)-9-N-benzoyladénine (9): 1,12 g (2,7 mmoles) de 8, 1,60 g (3,38 mmoles) de chloromercuri-N-benzoyladénine [31] et 2 g de célite sont additionnés de 200 ml de dichloréthane. Le mélange est séché par distillation de 50 ml de solvant. On ajoute alors environ 5 g de tamis moléculaire (4 Å) puis une solution de 0,4 ml de TiCl₄ dans 10 ml de dichloréthane. On maintient à reflux à l'abri de l'humidité pendant 22 h. On agite le mélange, encore chaud, avec 80 ml d'une solution aqueuse saturée de NaHCO₃ pendant 2 h. On filtre sur célite et lave le précipité sur le filtre avec 3 fois 50 ml de chloroforme bouillant. Après agitation du filtrat, on décante la phase organique qui est évaporée à sec. Le résidu est repris par 250 ml de CHCl₃ et la solution, lavée successivement avec une solution aqueuse de KI à 30% puis de l'eau, séchée (MgSO₄) et évaporée à sec. On obtient 780 mg (48%) d'un sirop très épais, presque pur d'après la CCM. (AcOEt) : une tache principale (9, Rf = 0,7) et deux faibles taches aux Rf ~ 0,2 et 0,8. L'échantillon analytique est obtenu par CCM. préparative (AcOEt) : solide vitreux. <math>[\alpha]_{18}^{18} = +62,3^{\circ}$ (c = 0,4, CHCl₃). IR., UV., RMN.: cf. [5].

 $C_{33}H_{31}N_5O_6 \ (593,64) \qquad Calc. \ C \ 66,77 \quad H \ 5,26 \quad N \ 11,80\% \qquad Tr. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,77 \quad H \ 5,26 \quad N \ 11,80\% \qquad Tr. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,77 \quad H \ 5,26 \quad N \ 11,80\% \qquad Tr. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \qquad Calc. \ C \ 66,95 \quad H \ 5,41 \quad N \ 11,59\% \\ (593,64) \ Calc. \ C \ 66,95 \quad H \ 5,41 \quad H \ 5,4$

(*O-Benzyl-3-benzyloxyméthyl-3-* β -L-érythrofurannosyl)-9-adénine (**10**): Une solution de 780 mg (1,3 mmole) de **9** dans 40 ml de méthanol est additionnée de 120 mg de néthylate de sodium et chauffée 1 h à reflux. Après neutralisation (CH₃COOH 10%) et évaporation, le résidu est repris par 50 ml de CH₂Cl₂. La solution obtenue, lavée (50 ml d'H₂O), séchée (MgSO₄) et concentrée est soumise à une CCM. préparative (AcOEt) qui fournit 289 mg (49%) de **10**: solide vitreux. [α]_D¹⁸ = +79,1° (c = 0,9, CHCl₃). CCM. (AcOEt): Rf = 0,3. IR., UV., RMN.: *cf.* [5].

 $C_{24}H_{25}N_5O_4 \ (447,50) \qquad Calc. \ C \ 64,42 \quad H \ 5,63 \quad N \ 15,65\% \qquad Tr. \ C \ 64,12 \quad H \ 5,93 \quad N \ 15,27\%$

O-Acétyl-3-acétoxyméthyl-3-O-isopropylidène-1, 2- α -D-érythrofurannose(**12'**): 1,69g (8,89 mmoles) de **4'** sont traités selon [17] par 20 ml de pyridine et 5 ml d'anhydride acétique 2 h à reflux. On verse le mélange sur 100 g de glace et obtient 1,33 g de cristaux de **12'**. Les eaux-mères sont extraites par 2 fois 50 ml de CHCl₃. La solution chloroformique séchée (MgSO₄) conduit par évaporation à des cristaux qui sont ajoutés aux premiers. Par recristallisation (hexane-CH₂Cl₂) du tout on obtient 2,18 g (89%) de **12'**: $V_{RR}^{170} = 0,60$. CCM. (éther) Rf = 0,9, (hexane/AcOEt 1:1) Rf = 0,6. F. 108,5-109,5°. $[\alpha]_{D}^{22} = +60,4°$ (c = 0,14, CHCl₃) [Litt. [12]: F. 110-111,5°; $[\alpha]_D = +64°$ (c = 1,4, CHCl₃)]. RMN. (CDCl₃): $\tau = 4,16, d, 1$ p., $J_{1,2} = 3,8$ Hz (H--C1); $\tau = 5,26, d, 1$ p., (H--C2); système A B centré sur $\tau = 5,57, 2$ p., J = 13 Hz (H₂–C3₁); $\tau = 5,78, d, 1$ p., $J_{4a,4b} = 9,5$ Hz (Ha–C4); $\tau = 6,09, d, 1$ p., (Hb–C4); $\tau = 7,90, s, 6$ p. (acétyle); $\tau = 8,45$ et 8,63, 2s, 2 × 3 p. (isopropylidène).

Tri-O-acétyl-1, 2, 3-acétoxyméthyl-3- β -(+ α)-D-érythrofurannose (13'): Une solution de 650 mg (2,37 mmoles) de 12' dans 15 ml de CH₃COOH à 70% est maintenue à 80° pendant 12 h. Après évaporation, le résidu est traité par un mélange de pyridine (10 ml) et d'anhydride acétique (5 ml) pendant 14 h à 25°. Le mélange traité comme décrit plus haut pour **8** fournit après séparation par CCM. préparative (éther) 355 mg (48%) de 13': sirop. 1R.: 5,70 μ ($\nu_{C=0}$), 8,2 μ (ν_{C-0-C}). CCM. (hexane/AcOEt 2:1) Rf = 0,45. RMN. (CDCl₃) (anomère β): τ = 3,88, d, 1 p., $J_{1,2} \simeq 0,7$ Hz (H-C1); τ = 4,55, d, 1 p. (H-C2); 2 systèmes AB centrés sur τ = 5,34 et 5,72, J respectivement de 12,3 et 11 Hz, 4 p. (H₂C4 et H₂C3₁); τ 7,84–7,94, plusieurs s, total 12 p. (acétyles).

 $C_{13}H_{18}O_9$ (318,28) Calc. C 49,05 H 5,71% Tr. C 49,14 H 5,69%

 $(Di-O-acétyl-2, 3-acétoxyméthyl-3-\beta-D-érythrofurannosyl)-9-N-benzoyladénine (14'): 400 mg (1,25 mmole) de 13' traités selon la technique décrite pour la préparation de 9 conduisent à 545 mg (86%) de solide jaunâtre présentant en CCM. (AcOEt) une tache principale (Rf = 0,4) et deux très légères impuretés (Rf = 0,1 et 0,9). Une CCM. préparative (AcOEt) effectuée sur une prise de 95 mg conduit à 87 mg de 14': solide vitreux. <math>[\alpha]_D^{20} = -72^\circ$ (c = 0,45, CHCl₃).

 $C_{23}H_{23}N_5O_8 \ (497,46) \qquad \text{Cale. C 55,53} \quad H \ 4,66 \quad N \ 14,08\% \qquad \text{Tr. C 55,76} \quad H \ 4,78 \quad N \ 13,90\%$

 $(Di-O-acétyl-2, 3-acétoxyméthyl-3-\beta-L-érythrofurannosyl)-9\cdot N-benzoyladénine (14): Préparé comme 14'. <math>[\alpha]_{D}^{22} = +68,9^{\circ} (c = 0,7, \text{CHCl}_3): \text{IR., UV., RMN.: cf. [5].}$

 $C_{23}H_{23}N_5O_8 \ (497,46) \qquad Calc. \ C \ 55,53 \qquad H \ 4,66 \qquad N \ 14,08 \ \% \qquad Tr. \ C \ 55,64 \qquad H \ 4,77 \qquad N \ 13,96 \ \% \qquad N \ 13,96 \ \% \qquad N \ 14,08 \ \% \qquad Tr. \ C \ 55,64 \qquad H \ 4,77 \qquad N \ 13,96 \ \% \qquad N \ 14,08 \ \% \ N \ 14,08 \ \% \ N \ 14,08 \ M \ 14,08 \ M \ N \ 14,08 \ M \ 14,08 \ M \ 14,08 \ M \ N \ 14,08 \ M \ 14,08 \$

(Hydroxyméthyl-3-β-D-érythrofurannosyl)-9-adénine (11'): A une solution de 435 mg (0,8 mmole) de 14' dans 10 ml de méthanol on ajoute 8 ml d'une solution méthanolique 0,1 M de méthanolate de sodium. On porte à reflux pendant 1 h à l'abri de l'humidité. Le résidu obtenu par évaporation du méthanol est repris par 25 ml d'eau et le pH amené à 7 au moyen de CH₃COOH à 10%. La solution lavée par 3 fois 20 ml d'éther puis évaporée conduit à un sirop qui, trituré avec quelques gouttes d'eau, fournit 153 mg (71%) de cristaux de 11'. L'échantillon analytique est obtenu par recristallisation (MeOH-H₂O): fines aiguilles F. 235-239° après perte de la structure cristalline à 112-116°. $[\alpha]_{D}^{22} = -74,25$ (c = 0,5, pyridine). CCM. (éther isopropylique/MeOH 1:1): Rf = 0,4. Chromatographie sur papier (solvant: H_2O saturée de *n*-butanol): Rf = 0,64, $R_{adénine} = 1,18$. UV. (H_2O): 259 (13900), (HCl, 0,5 N): 257 (13800); (NaOH 0,5 N): 259 (13900). IR., RMN. (C₅D₅N) identiques à ceux de son énantiomère L (cf. [5]). RMN. (CD₃)₂SO): $\tau = 1.63$ et 1.78, 2s, 2×1 p. (H-C2 et H–C8); $\tau = 2,72$, s, 2 p. (NH₂); $\tau = 4,07$, d, 1 p., $J_{1',2'} = 7,3$ Hz (H–C1'); $\tau = 4,58$, d, 1 p., $J_{\text{HO},2'} = 5,8 \text{ Hz} (\text{HO}-\text{C2'}); \tau = 4,98-5,26, m, 2 \text{ p.}, (\text{H}-\text{C2'}+\text{HOC3'}_1); \tau = 5,63, d, 1 \text{ p.}, J_{4'a,4'b} = 5,63, d, 1 \text{ p.}$ 9,7 Hz (Ha–C4'); $\tau = 6,19, d, 1$ p. (Hb–C4'); $\tau = 6,49, d, 2$ p., $J_{HO,3'1} = 5,5$ Hz (H₂C3'₁); $\tau = 6,65,$ s, 1 p. (HO-C3'). Par addition d'une goutte de D₂O les modifications suivantes interviennent: disparition des signaux attribués aux hydroxyles, H–C2' devient 1 doublet $\tau = 5,18$, et H₂C3'₁, un singulet de 2 p. à $\tau = 6,46$. SM.: 136 (100) (Ad + 2 H)+, 135 (98) (Ad + H)+, 267 (33) (M+), 178 (26) (M^+ – 89), 108 (22) (Ad—CN)⁺, 57 (8), 165 (7), 119 (7), 29 (6).

 $C_{16}H_{16}N_8O_{11} \ (496,35) \qquad Calc. \ C \ 38,69 \quad H \ 3,26 \quad N \ 22,56\% \qquad Tr. \ C \ 38,88 \quad H \ 3,47 \quad N \ 22,31\%$

 $(Hydroxyméthyl-3-\beta-L-érythrofurannosyl)-9-adénine (11) - 1$. Par désacylation de 14: Mêmes conditions que pour 14'.

2. Par débenzylation de **10** selon une technique adaptée de [32]: 120 mg de PdCl₂ dans 80 ml de MeOH sont maintenus sous 3 atm d'H₂ à 25°. On ajoute alors une solution de 120 mg (0,24 mmole) de **10** dans 40 ml de méthanol et maintient 4,5 h sous 3 atm d'H₂ à 25°. Après filtration la solution est neutralisée (Dowex 2 [HCO₃-]) refiltrée et évaporée. On obtient 38 mg (59%) de cristaux de **11**: F. 228-232° après perte de la structure cristalline à 110-115°. $[\alpha]_D^{22} = +75°$ (c = 0,44, pyridine). IR. et RMN. (pyridine): cf. [5].

Essai de désamination de **11**' par l'adénosine-désaminase: Nous avons utilisé l'adénosine-désaminase d'intestin de Veau Boehringer, suspension à 2 mg/ml d'enzyme d'activité spécifique environ 200 U./mg. – On ajoute 0,1 ml d'une dilution de la préparation d'enzyme (= 0,2 U./ml) à 2,9 ml d'une solution 10^{-4} M de **11**' dans un tampon phosphate 0,05 M, FH 7,5. La réaction est suivie à 37° par enregistrement du spectre UV. entre 200 et 300 nm toutes les 3 min. Aucune modification n'apparaît au cours du temps, alors que dans les mêmes conditions l'adénosine est rapidement désaminée (disparition du maximum à 258 nm apparition d'un maximum à 252 nm). – Des concentrations d'enzyme jusqu'à 20 fois supérieures ne provoquent toujours pas la désamination de **11**'.

Essais d'inhibition de la croissance de certaines bactéries. -1. En milieu solide: Les essais sont réalisés en boites de Petri selon le protocole de la pharmacopée helvétique VI. L'apionucléoside 11' à des concentrations de 1 à 500 γ/ml n'inhibe pas la croissance de Bacillus subtilis, Escherichia coli et Sarcina lutea, cultivés sur milieu Difco agarisé. Les mêmes concentrations n'inhibent pas la croissance de Staphylococcus aureus Oxford cultivé sur milieu B (vide infra), type Hanka & Burch [29] agarisé.

2. En milieu liquide: 10 ml d'un milieu liquide (A, type Gray & Tatum [28]; B, type Hanka & Burch [29] (vide infra) ou Difco), contenant des quantités variables de **11**', sont ensemencés par 0,1 ml d'une suspension de bactéries préalablement cultivées 24 h sur le même milieu. La variation de la turbidité du milieu en fonction du temps est enregistrée. A la concentration de 50 γ /ml, en milieu Difco, **11**' n'inhibe pas la croissance d'Escherichia coli. Par contre, cette croissance est inhibée en milieu A par des concentrations de 20 à 100 γ /ml de **11**' (cf. fig. 2). Dc même, la croissance de Staphylococcus aureus Oxford est fortement inhibée en milieu liquide B par des concentrations de 75 à 100 γ /ml de **11**'.

Milieu B: Pour 1 1: $\rm KH_2PO_4$: 1 g, $\rm Na_2HPO_4$: 2 g, $\rm MgSO_4$, 7 $\rm H_2O$: 0,11 g, $\rm NH_4C$: 1 g, 0,8 g d'hydrolysat de caséine, 40 mg d'acide nicotique, 4 mg de cystéine, 500 mg de thiamine, 1 ml d'une solution de glucose à 40% et 2,5 ml d'une solution à 4% d'«extrait de levure» *Difco*.

Les analyses élémentaires ont été effectuées par le Dr K. Eder (Ecole de Chimie, Université de Genève) que nous remercions bien vivement. Nous exprimons notre reconnaissance au Dr Elisabeth Schorer, (Département de Biologie Végétale, Université de Genève) dont les conseils et l'aide efficace nous ont été indispensables pour la partie bactériologique de ce travail. Nous remercions le Professeur A. Buchs (Laboratoire de Spectrométrie de masse de l'Ecole de Chimie, Université de Genève) pour les SM. Nous remercions le Fonds National Suisse de la Recherche Scientifique d'un subside (n° 2123-69).

BIBLIOGRAPHIE

- [1] J. M. J. Tronchet & J. Tronchet, Helv. 53, 1174 (1970).
- [2] E. Walton, S. R. Jenkins, R. F. Nutt, M. Zimmerman & F. W. Holly, J. Amer. chem. Soc. 88, 4524 (1966).
- [3] F.W. Lichtenthaler & H.Zinke, Angew. Chem. (Int. ed.) 5, 737 (1966); E. J. Reist, Chemistry & Ind. 1967, 1957; E. J. Reist, D. F. Calkins & L.Goodman, J. Amer. chem. Soc. 90, 3852 (1968); J. Novak, J. Smejkal & F. Šorm, Tetrahedron Letters 1969, 1627; G. B. Howarth, W.A. Szarek & J. K.N. Jones, Canad. J. Chemistry 46, 3691 (1968); J. org. Chemistry 34, 476 (1969); A. Rosenthal & L. B. Nguyen, J. org. Chemistry 34, 1029 (1969); A. Rosenthal, M. Prinzl & H. J. Koch, Canad. J. Chemistry 47, 3263 (1969); A. Rosenthal & M. Sprinzl, ibid. 47, 3941, 4477 (1969); A. Rosenthal & D. A. Baker, Tetrahedron Letters, 1970, 4233; F. Perini, F.A. Carey & L. Long, Carbohydrate Research 11, 159 (1969).
- [4] R.F. Nutt & E. Walton, J. medicin. Chemistry 11, 151 (1968); R.F. Nutt, M. J. Dickinson, F. W. Holly & E. Walton, J. org. Chemistry 33, 1789 (1968); S. R. Jenkins, B. Arison & E. Walton, ibid. 33, 2490 (1968); E. Walton, J. R. Jenkins, R. F. Nutt, F. W. Holly & M. Nemes, J. medicin. Chemistry 12, 306 (1969).
- [5] J.M.J. Tronchet & J. Tronchet, Helv. 53, 853 (1970).
- [6] V. M. Parikh & J. K. N. Jones, Canad. J. Chemistry 43, 3452 (1965).
- [7] J.M.J. Tronchet & J. Tronchet, C.r. hebd. Séances Acad. Sci. [C] 267, 626 (1968).
- [8] D. Horton, J. B. Hughes & J. M. J. Tronchet, Chem. Commun. 1965, 481; D. Horton & J.M. J. Tronchet, Carbohydrate Research 2, 315 (1966); D. Horton, J.L.Goodman & J.M. J. Tronchet, ibid. 4, 392 (1967).
- [9] H. Normant, Advances org. Chemistry 2, 1 (1960), et références citées.
- [10] J.S. Burton, W.G. Overend & N. R. Williams, Chemistry & Ind. 1961, 175.
- [11] J.M.J. Tronchet, A. Jotterand, N.Le-Hong, F. Perret, S. Jaccard-Thorndahl, J. Tronchet, J.M. Chalet, L. Faivre, C. Hausser & C. Sébastian, Helv. 53, 1484 (1970).

- [12] D.H. Ball, F.A. Carey, I.L. Klundt & L. Long, Carbohydrate Research 10, 121 (1969).
- [13] A.D. Ezekiel, W.G. Overend & N.R. Williams, Tetrahedron Letters 1969, 1635.
- [14] J.S. Brimacombe & D.A. Ching, Carbohydrate Research 8, 82 (1968).
- [15] J.D. Stevens & H.G. Fletcher, J. org. Chemistry 33, 1799 (1968).
- [16] J. Prokop & D. H. Murray, J. pharmaceut. Sci. 54, 359 (1965).
- [17] F.A. Carey, D.H. Ball & L. Long, Carbohydrate Research, 3, 205 (1966).
- [18] K. Biemann & J. A. McCloskey, J. Amer. chem. Soc. 84, 2005 (1962).
- [19] S. Hanessian, D. C. De Jongh & J.A. McCloskey, Biochim. biophys. Acta 117, 480 (1966); J. J. Dolhun & J.L. Wiebers, Organic Mass Spectroscopy 3, 669 (1970).
- [20] C.D. Jardetsky, J. Amer. chem. Soc. 82, 229 (1960).
- [21] M. Karplus, J. chem. Physics 30, 11 (1959).
- [22] R. J. Abraham, L. D. Hall, L. Hough & K. A. McLauchlan, J. chem. Soc. 1962, 3699.
- [23] B. J. Blackburn, A. A. Gray, I. C. P. Smith & F. E. Hruska, Canad. J. Chemistry 48, 2866 (1970).
- [24] F. E. Hruska, A. A. Gray & I. C. P. Smith, J. Amer. chem. Soc. 92, 4088 (1970).
- [25] J. M. J. Tronchet & J. Tronchet, Résultats non publiés.
- [26] A. Bloch, M. J. Robins & J. R. McCarthy, J. medicin. Chemistry 10, 908 (1967).
- [27] H. T. Shigeura & S. D. Sampson, Nature 215, 419 (1967).
- [28] C.H.Gray & E.L. Tatum, Proc. natl. Acad. Sci. U.S. 30, 404 (1944).
- [29] L. J. Hanka & M. R. Burch, Antibiotics & Chemotherapy 10, 484 (1960).
- [30] J.A. Souza & A.L. Bluhm, J. org. Chemistry 25, 108 (1960).
- [31] M. W. Bullock, J. J. Hand & E.L. R. Stokstad, J. org. Chemistry 22, 568 (1957); J. Davoll & B. A. Lowy, J. Amer. chem. Soc. 73, 1650 (1951).
- [32] C. P. J. Glaudemans & H.G. Fletcher, J. org. Chemistry 28, 3004 (1963).

153. The Synthesis of 7,7-Difluoronorbornene

Preliminary Communication¹)

by C.W. Jefford and W. Broeckx

Département de Chimie Organique, Université de Genève, 1211 Genève 4

(25. V. 71)

Summary. The synthesis of 7,7-difluoronorborn-2-ene and its endo-5-phenyl derivative is described.

7,7-Difluoronorbornene (1) and its derivatives should be excellent candidates for mechanistic studies, especially so in view of the versatility of the norbornene skeleton [1] and the particular spectroscopic visibility of the substituent fluorine [2]. We report here an effective method for the synthesis of 1 and its *endo*-5-phenyl derivative 2.

The obvious approach to the synthesis of 1 and its derivatives is by the (4 + 2) cyclo-addition of 5,5-difluorocyclopentadiene (3) to olefins. Unfortunately, compound

1) A detailed article will be submitted later to Helv.